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SUMMARY 

A deployable, tension-wire stiffened truss-column configuration is 

considered for space structure applications. An analytical procedure is 

developed for design of the truss-column and exercised in numerical studies. 

The analytical procedure is based on using equivalent beam stiffness coef- 

ficients in the classical analysis for an initially imperfect beam-column. 

Failure constraints are then formulated which are used in a combined weight/ 

strength and nonlinear mathematical programming automated design procedure 

to determine the minimum mass column for a particular combination of design 

load and length. Numerical studies show the mass characteristics of the 

truss-column for broad ranges of load and length. Comparisons of the truss- 

column with a baseline tubular column are made using a special structural 

efficiency parameter for this class of columns. 

INTRODUCTION 

One frequently considered concept for large space structures is a space 

truss composed of stiff column or bar elements. Design conditions for this 

type of structure have been considered in references 1 and 2. This concept 

is discussed in reference 3 for application to the solar array structure in 

a space solar power station. 

Critical to this concept are the design and fabrication of the column 

or bar members making up the truss and efficient packaging for transporting 

the elements to space. References 1, 2, 3, and 4 have considered various 

aspects of this problem. Reference 5 presents a design procedure and struc- 

tural efficiency comparison for several different column types to evaluate 

their suitability for space applications based on structural efficiency. 

However, the associated problems of fabrication and packaging of the columns 

are not considered in reference 5. 



Because of the large size of many of the space systems being consid- 

ered, both the length and diameter of the individual component members must 

be large to create an efficient structure. This large size for the column 

element makes complete fabrication to the structural state on Earth and 

subsequent transportation to space impractical. Thus fabrication and pack- 

aging of a column concept become at least as important as structural effic- 

iency and probably more so. 

Two basic fabrication/packaging concepts have received most of the 

attention in studies of large space systems. In one approach, the primary 

structural columns are assembled on orbit from Earth fabricated, nestable 

tapered columns (refs. 2 and 4). It has been shown in these references 

that, because of the nesting of the column half elements, high packing densi- 

ties can be achieved. In addition, the tapered columns can be assembled 

into large primary columns that have good structural efficiency. The draw- 

back of this method is that the on-orbit assembly is highly labor intensive 

requiring automation for the large systems. In the second approach, raw 

material stock (either aluminum or composites) is transported along with a 

fabrication machine to space, where the actual fabrication takes place 

(refs. 3 and 6). Although both structurally efficient members and high 

packing densities can be achieved with this approach, the added complexity 

of on-orbit fabrication is a significant drawback. 

An alternative to these concepts is a deployable primary column 

which is fabricated, tested, and packaged on Earth and then transported 

into space 

minimum of 

ing assemb 1 

operations 

The column is then expanded to its structural state with a 

operations on orbit. This approach eliminates the time consum- 

y of many smaller components and minimizes the complicated 

in space associated with on-orbit fabrication. The problems 

of a dep 

(1) 

loyable column concept are: 

The difficulty of designing a collapsable structure whose 

deployed length and possibly width are large compared 

with the launch vehicle. 

(2) 
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Maintaining high structural efficiency so that the overall 

mass that must be transported to space is low. 



(3) Packaging the structure appropriately to achieve mass 

critical payloads in the launch vehicle. 

In this study, attention is focused on problem (2). A tension-wire 

stiffened truss-column design, that was previously described in reference 7, 

is considered herein. Reference 7 presented results from a structural 

efficiency and packaging study of the column. Presented herein, are: 

(a) A description of the load carrying mechanisms and structural 

behavior of the column. 

(b) An analytical and design procedure for the column. 

(c) A number of numerical studies which characterize the column 

design for a broad range of lengths and applied axial loadings. 

SYMBOLS 

A,, AC, A,, Ad cross sectional areas of longerons, center column, spokes, 

and diagonals 

a maximum amplitude of sinusoidal imperfection 

C axial stiffness for the truss-column defined in 

equation A-l 

cS 
transverse shear stiffness for the truss-column 

defined in equation A-4 

D bending stiffness for the truss-column defined 

in equation A-3 

Young's modulus of the longerons, center column, 

spokes, and diagonals 

Gi 

IC 

failure constraints on the design of the truss-column 

moment of inertia of the center column 

L column length 

M column mass; also bending moment (equation A-5) 
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multiplier to account for the mass of the joints 

in the truss column 

maximum bending moment induced in the column 

by an imperfection 

number of bays in a truss-column 

applied axial compressive load in the column 

design load for the column (assumed compressive) 

Euler buckling load for the column (equation A-6) 

initial forces in the longerons and center column 

axial component of the diagonal load at any 

column cross section 

load induced in a spoke by the diagonals 

radius of truss-column cross section (see figure 2) 

cross sectional radii of longerons, center column, 

spokes, and diagonals 

minimum allowable tube radius for spokes and center column 

minimum allowable solid radius for members 

initial tension in the diagonals 

wall thickness of center column and spokes 

transverse shear force induced by an imperfection 

maximum value of the transverse shear force 

column axial coordinate 

axial end shortening of the column 

ratio of longeron stiffness to center column 

stiffness defined in equation A-21 
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total complementary potential energy of the 

column 

0 diagonal angle defined in figure 2 

E column neutral axis strain 

K column curvature 

material density of longerons, diagonals, 

center column and spokes 

DESCRIPTION OF THE TENSION WIRE 

STIFFENED TRUSS-COLUMN 

A model of a four bay section of a tension wire stiffened truss-column 

in its deployed state is shown in figure 1. A hinge joint or joints would 

be present along the center column in an actual structure to allow the 

packaged column to be folded to fit in the cargo area of the launch vehicle. 

In the analysis presented, a very simple butt hinge is postulated which will 

transmit compressive forces in the center column but not tensile forces. The 

requirement that the center column not be carrying a tensile load when the 

overall truss-column is under tension is prescribed as a design condition. 

The tension-wire stiffened truss-column discussed herein is composed 

of four types of members: 

(1) The center column runs along the centroidal axis of the equilat- 

eral triangular cross section and carries the compressive forces 

induced by applying initial tension to the longeron members plus 

a part of any axial loading applied to the truss-column. 

(2) The three longeron members at the vertices of the triangular 

cross section are under an initial tensile load. These provide 

all of the truss column's bending stiffness and part of the 

axial stiffness until one or more of the three longerons become 

"slack" due to an applied compressive load to the column. 



(3) 

(4) 

The three sets of diagonal members in each bay of the truss-column 

are also capable of carrying only tension. These provide all of 

the transverse shear stiffness of the truss column until the 

shear load reaches a value that causes the diagonals to become 

"slack". Actually, under a shear load, some of the diagonals 

tend to lose tension and some become more stressed; however, a 

significant loss of transverse shear stiffness results when any 

of the diagonal members become slack. 

Three spokes are placed at intervals (the bay length) along the 

center column, and in the deployed state, run radially from the 

center column to the longerons. When the truss-column is com- 

pacted, the hinges at each end of the spoke allow the spoke to 

fold flat against the center column. At the same time, the long- 

erons collapse onto the center column to drastically reduce the 

radius of the truss. The spokes serve to maintain the cross 

sectional shape, to support the center column at intervals, and 

also to induce a uniform tension in the diagonal members. 

From figure 1 it can be seen that one of the interior spokes at each 

set is slightly buckled. This buckled spoke acts as a constant force 

spring which regulates the tension in the diagonal members. Thus, when 

the column is deployed and the spokes buckle, a uniform tension, related 

to the buckling load of the spoke, is induced in the diagonals. If the 

spokes remained rigid during deployment, the tension in the diagonals would 

be highly dependent on the exact length of the diagonal and due to manufac- 

turing tolerances would vary from bay to bay. The design criteria for the 

internal spokes, then, is that their buckling load induce the necessary 

tension in the diagonals. The exterior spokes (three at each end of the 

column) can not buckle since they carry a vertical component of load from 

the longerons sloping to the center column. These three spokes at each end 

are designed specially. 
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ANALYSIS AND DESIGN PROCEDURE 

The design of the wire-stiffened expandable truss-column is made mOre 

difficult because (1) certain considerations have to be made to allow the 

structure to deploy reliably and (2) since it is a pre-tensioned structure, 

the values of the initial forces must be selected and have an important 

influence on the remainder of the design. The approach used to analyze the 

truss-column is very similar to that used in reference 5 with the above two 

factors included. In reference 5 the importance of considering the effects 

of an imperfection in the column design was demonstrated. An imperfection 

or bow in the column has two primary implications. First, the imperfection 

causes a bending moment to be induced in the truss-column due to an axial 

load which tends to overload one of the longerons. Second, the imperfection 

causes a transverse shear force to be induced in the truss-column which must 

be carried by the diagonal members. This induced transverse shear force 

determines the amount of initial tension required in the diagonal members. 

The analysis of the truss-column is based on determining a set of 

equivalent beam properties for the truss and using these in an imperfect 

column analysis (see ref. 8) to predict the overall loads and deformations. 

Then the forces in the individual members (center column, longerons, spokes, 

and diagonals) can be calculated and used to determine expressions for differ- 

ent failure modes. This analysis procedure is derived in detail in Appendix A. 

Based on this analysis the design of the truss-column is accomplished 

by a combination of classical weight-strength methods and direct minimization 

of the truss mass to yield the minimum mass structure. The design load, Pdes, 

the column length, L, the wall thickness of the tubular center column and 

spokes, and the diagonal angle, 8, (see fig. 2) were assumed to be known. 

Although the tubular member wall thicknesses could also be selected in the 

design process, experience has shown that for these lightly loaded columns, 

wall thicknesses tend to be selected at a minimum gage due to manufacturing 

constraints. Specific values taken for wall thicknesses are listed in the 

numerical results section. For manufacturing convenience, the diagonal 

angle, 8, was also kept constant in the optimization process; however, the 
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effect of variation in 0 on the truss-column mass was considered in numerical 

studies. Because 8 is constant, the number of bays, n, in the fixed length 

truss also fixes the cross sectional dimensions. The optimum number of bays, 

n, the longeron radius, rR, the center column radius, rd, and the initial 

pretension in the column are the design variables considered. To maintain a 

realistic and manufacturable design, lower bounds on the member cross sec- 

tional properties were also assumed. For the spokes and center column, a 

constraint on minimum allowable tube radius is imposed. When the optimization 

routine tries to select a radius for these members less than this minimum, it 

is forced to consider the mass and stiffness of a solid member instead. Thus 

for a short, lightly loaded truss-column, all of the members could be solid 

rods. A minimum allowable radius is also prescribed for the solid members-- 

longerons, diagonals, and spokes and center column for lightly loaded cases. 

The mixed weight-strength and nonlinear mathematical programming 

approach to the design of the truss-column was chosen to exploit character- 

istics of this specific problem and to allow the flexibility to impose lower 

bounds or arbitrarily fix certain of the design variables. For example, 

the diagonals and spokes can be sized directly (see equations A-34, A-36, 

and A-37) based on assumed failure modes which eliminates their design from 

the mathematical programming process. Sizing of the longerons and center 

column is slightly more complicated, however, because of the interaction 

between these members. It was found that failure of these members was 

governed by two constraints: Gl, a constraint against the center column 

buckling between bays and G2, a constraint requiring tension to be 

maintained in the longerons (see Appendix A for expressions for Gl and G2). a 
However, for any value of n, these two constraints are not necessarily simul- 

taneously active. The trends exhibited in the truss-column design process 

and the relationship between the constraints Gl and G2 can be seen in figure 

3. For this particular case, the minimum mass truss-column has approximately 

50 bays. The curve for the mass of the center column can be divided into two 

ranges; to the left of n = 50, the center column is buckling critical or con- 

straint G 1 is active. In this range, the longeron "slackening" constraint G2 

is not active. To the right of n = 50, Gl is no longer active and G2 becomes the 

governing constraint. 
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It is obvious that for the optimum number of bays, n = 50, both con- 

straints are active which is characteristic of a weight-strength design. 

However, in general, two other considerations are important: 

(1) In practice, slightly off-optimum designs particularly with 

with fewer bays may be desirable. --- 

(2) Minimum gage constraints becoming active for one or both 

of these members will influence constraints Gl and G2. 

Thus the determination of the center column and longeron radii, subject to 

lower bound constraints, is best solved by a nonlinear math programming 

approach. Since the constraint equations are quite simple, they were directly 

coupled with an available computer code for constrained minimization, CONMIN 

(ref. 9). 

STRUCTURAL BEHAVIOR OF THE TRUSS-COLUMN 

Insight into the load carrying mechanism of the truss-column can be 

obtained by calculating the end deflections of the column under axial load. 

The load-shortening curve for an imperfect column can be determined from 

equation A-11. The corresponding loads in the center column, longerons, and 

diagonals under the applied axial load P can be found from equations A-26, 

A-28, A-14 and A-27, respectively. The load-deflection behavior for one 

specific case, a 50 m column with a 500 N design load, is shown in figure 4. 

The axial deflections of the overall column and members are plotted over the 

complete range of loading from -Pdes (tension) to Pdes (compression). 

Because of the spokes acting as a regulating mechanism maintaining constant 

tension, the axial force in the diagonals, P,, is constant for all loadings. 

At P = -Pdes the force in the center column drops to zero and all the loading 

is being carried by the longerons. Similarly, when P = Pdes, the most heavily 

loaded longeron becomes "slack" and will carry no additional load. 

The nonlinear behavior of the truss-column due to the assumed imperfection 

is evident when P approaches Pdes. However, the nonlinearity is fairly mild. 

The reason for this is that the optimum column designed for an imperfection tends 
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to have a value of Pdes /P significantly less than 1.0. For this particular E 

example Pdes/PE = .614. An efficient column design is achieved essentially 

by making P des/PE small enough so that nonlinear bending effects are small. 

NUMERICAL STUDIES 

Using the design procedure developed in Appendix A, numerical results were 

obtained for various values of the column length (5 m, 50 m, 500 m), design 

load (5 N, 50 N, 500 N, 5000 N, 25000 N), assumed imperfection a/L (.OOOl- 

.0060), and diagonal angle 8 (15"-75"). A value of 110.2 GN/m2 (16 x lo6 psi) 

was used for the Young's modulus of the graphite/epoxy material in the center 

column, longerons, spokes and diagonals. This is typical of a material 

composed of mostly unidirectional, intermediate modulus fibers. The density 

is taken to be 1522 kg/m3 (.055 lbm/in3). 

The selection of minimum gage dimensions for the truss members is 

somewhat arbitrary since it requires an assessment of the state of the art 

in manufacture of graphite/epoxy materials which is also highly dependent on 

both fiber and resin systems used. However, the following dimensions were 

selected for the numerical studies: 

O tubular wall thickness, tc, tS = .71 mm (.028 in) 

o minimum tube radius for spokes and center column, rmin = 2.54 mn (.l in) 

o minimum radius of solid cross section rsol min = .381 mm (.015 in) 
, 

It was also necessary to select values for the column imperfection 

parameter a/L. In reference 8 where the parameter a/L as a measure of imper- 

fections is discussed, the value a/L = .0025 is suggested for design calcu- 

lations. However, this value was selected with reference to civil engineering 

applications and it is expected here that careful fabrication procedures 

which would be used for space applications would reduce the overall imper- 

fections. Thus a value of a/L = .OOlO was used for most of the cases. 

As mentioned in Appendix A, the effect of joint mass was also considered 

by assuming the total mass of all joints to be a fixed percentage of the 

structural mass. Accounting for joint mass in this way has no effect on the 
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other design parameters but it does provide a means for making rational com- 

parisons between the truss-column and other columns without joints. In 

equation A-38, the total mass of the truss-column M is defined to be a 

product of a joint mass factor M, and the structural mass. A value of 

MJ = 1.35 was selected for the nimerical stud 

Deta ils of the designs for two values of 

are shown in Table I. The constraint imposed 

sions is seen by noting that the diagonal rad 

by this value. The ratios of the design load 

es. 

diagonal angle (45"; 60") 

by assuming minimum gage dimen- 

us rd is usually designed 

to the Euler buckling load, 

Pdes/PE, for the more heavily loaded columns indicate the knockdown 

in load carrying capability due to imperfections. For the very lightly 

loaded columns, the longerons are often sized by the minimum gage value 

r sol,min which causes Pdes/PE to be overly low. 

The effect of the value of a/L on the truss-column mass for one 

specific case is shown in figure 5. The mass penalty for a column designed 

for an a/L = .OOlO compared with a/L = .OOOl is approximately 18%. The 

number of bays in the optimum column is also shown for different designs. 

As can be seen, larger assumed imperfections tend to reduce the number of 

bays and thus increase the cross section and column bending stiffness. 

Although a diagonal angle 0 of 45" was selected as a baseline angle, 

it was recognized that this was not optimum for either structural efficiency 

or manufacturability. The effect of diagonal angle 8 on the truss-column 

mass is shown in figure 6. More structurally efficient columns have values 

of e less than 45" and necessarily more bays. However, it is expected 

that the cost of manufacturing is directly proportional to the number of bays 

(and joints) and thus a higher value of 8 might be more desirable. Compari- 

sons of the number of bays for designs with e = 60" versus 8 = 45" for 

different column lengths and loads can be made from Table I. 

Finally, to compare the tension wire stiffened truss-column with other 

column concepts, a structural efficiency plot for the truss-column and tubular 

column is presented in figure 7. The structural efficiency parameter M/L5'3 

was shown in reference 5 to be useful for comparing the masses of lightly 

loaded columns at different values of the design load. A tubular column 
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design appears as a single, length independent line on a structural efficiency 

plot using this -parameter. This allows for easy comparison between the 

tubular column and other column concepts such as the wire stiffened truss- 

column. The tubular column is of interest not only as a structural baseline 

but also because its structural efficiency is very close to that of the double 

tapered, nesting graphite/epoxy column described in references 2 and 4. The 

graphite/epoxy tubular column plot in figure 7 represents an optimum design 

which is critical in Euler buckling and has a wall thickness t = .015 and modulus 

equal to that of the truss-column. For higher loadings, local wall buckling 

would have to be considered; the point where this would be necessary and the 

structural efficiency of columns in this range are indicated approximately by 

the dashed line in figure 7. 

Structural efficiency curves for truss-columns of three lengths (5 m, 

50 m, 500 m) are also shown in figure 7. A diagonal angle e of 45" and an 

assumed imperfection a/L of .OOlO were prescribed. The flattening out of the 

curves for the 5 and 50 meter columns at low loadings is because the minimum 

gage parameters are becoming active for these designs. Over most of the 

load range, the 5 m truss-column is more efficient than the tubular column; 

for the longer lengths (50 m, 500 m) this is even more significant. Struc- 

tural efficiency plots of this type for other column concepts can be found 

in reference 5 which can be used in comparisons with the tension stiffened 

truss-column in this study. 

CONCLUDING REMARKS 

The structural efficiency of a wire-stiffened, expandable truss-column 

is investigated by developing a design procedure for a minimum mass structure. 

The design procedure employs a combined weight-strength and direct mass 

minimization approach exploiting specific characteristics of the structure. 

Numerical results are obtained for truss-columns with a wide variety of 

lengths and design loads and the masses are compared with tubular column 

designs. Specific conclusions obtained from this study are as follows: 

12 



(1) The wire-stiffened, expandable truss-column is si 

structurally efficient than the baseline tu,bular 

larly for longer lengths. 

gnificantly more 

column, particu- 

(2) Design based on an assumed imperfection is import ant because 

(a) it provides a criteria for determining the necessary value 

for the diagonal number pretension, and (b) significant differences 

in both the final configuration and mass of the structure compared 

with the perfect case result. 

(3) For short or lightly loaded columns the design may be dictated 

by manufacturing minimum gage constraints and these must be included. 

(4) For realistic automated design, the design/analysis procedure should 

be sufficiently general to allow arbitrary bounds on design variables 

and a general set of constraint functions. Nonlinear mathematical 

programming methods allow the criteria to be met. 
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APPENDIX A 

ANALYSIS OF THE TRUSS COLUMN 

The analysis of the tension wire stiffened truss-column shown in 

figures 1 and 2 is based on determining a set of equivalent beam exten- 

sional, bending, and transverse shear stiffness for the truss. These equiva- 

lent stiffnesses are used in the imperfect column analysis to predict the 

overall behavior of the structure. The individual member loads in the 

center column, longerons, diagonals, and spokes are then calculated from the 

overall loads and deformations of the column. Knowing the member loads, the 

failure of each component can be predicted. Finally, the optimum truss- 

column is designed by minimizing the truss mass subject to constraints 

on the different failure modes and side constraints on the design variables. 

Equivalent Beam Stiffnesses for the Truss 

The axial and bending stiffness for the truss-column are derived from 

simple statics. Because the spokes are buckled in the unloaded column, the 

diagonal members and the spokes do not contribute to the axial or bending 

stiffnesses. The equivalent axial stiffness, C, can be written as 

C = 3E,A, + EcAc (A-1 ) 

Noting that the center column lies at the centroid of the triangles which is 

the neutral axis for the beam and neglecting the bending stiffnesses of the 

individual members, the bending stiffness, D, can be written as 

where R is shown in figure 2. 

This can be rewritten in terms of the overall column length, L, the 

number of bays in the column, n, and the diagonal angle, 8, as 

2 
D = E,A2L 

2n2tan2e 
(A-3) 

14 



The transverse shear stiffness, Cs, is obtained from reference 10 as 

c, = 3&.&j sine cos2e (A-4) 

The transverse shear stiffness will be specified later so that the 

transverse shear deflections in the column are negligible compared with 

those due to bending. In the column analysis that follows, the effect of 

transverse shear deformation is ignored. 

Column Analysis with an Initial Imperfection 

In reference 5, the effects of an initial imperfection in column straight- 

ness were considered in the design of truss-columns. In the present study a 

similar approach is used for the tension-wire stiffened column. The two pri- 

mary implications of such an imperfection are that a bending moment and a 

transverse shear force are induced in the column in addition to the axial 

force. The momeht induced in an axially loaded column with a sinusoidal 

imperfection in straightness is taken from reference 8 as 

M=i++ sin F (A-5) 

where P is the axial load, a is the maximum amplitude of the initial imper- 

fection, x is an axial coordinate referenced from the end of the column, and 

PE is the Euler buckling load of a perfect column which is defined as 

2 
pE = ti 

L2 

The maximum moment occurs at the center of the column (x = L/2) and is 

obtained from equation A-5 as 

M z1 Pa 
max - p/p, 

(A-6) 

(A-7) 

The imperfection induced shear load V is determined by taking the derivative 

of equation A-5 with respect to x. This results in 
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(A-8) 

which has a maximum value at (x = 0) of 

v 

P T+ 

max = 1 - P/P 
E 

(A-9) 

For the imperfect column, the end shortening is a function of both the 

strain along the column neutral axis and the transverse deflection, w. This 

end shortening (A) under the axial load is a measure of the column's stiffness 

which is of significance when considering a truss structure assembled from 

these members. An expression for the end shortening, consistent with equation 

A-5, can be derived by considering the nonlinear strain-displacement relation 

for a column with a sinusoidal imperfection 

where E = -p 
2 

C and since M = -D dw 
dx2 ' 

W= 
Pa 

PE - P sin ?K L 

L 

Defining the end shortening A = u(o) - u(L) = - d" dx, 
0 dx 

equation A-10 can be rearranged and integrated to give 

2L p/p, t1 - p/2pE) /+-+(a2T- 
L) 2 

(1 - p/p,)2 

(A-10) 

(A-11) 

Member Loads in the Truss 

Now that the stress resultants have been determined from the beam-column 

analysis, the loads in the longerons, the center column, the diagonals, and 

spokes can be calculated. As mentioned previously, the diagonals and spokes 

do not carry any of the bending or axial loading in the column; the forces 

in these members are due only to the induced transverse shear and initial 
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forces. Because the center column lies along the beam's neutral axis it 

carries none of the induced bending moment. Its load is due only to the 

column axial force. The forces in the longerons are due to the column axial 

force and the imperfection induced bending moment. The derivation of expres- 

sions for these member forces is considered below. 

Since the internal equilibrium of the truss-column is a statically 

indeterminate problem, the member forces are determined by considering the 

deformations and axial equilibrium at any point along the length. The 

force in any longeron can be written in terms of the neutral axis strain, 

e, and curvature, KS as 

P, = A,E,E + A,E,RK + PIa (A-12) 

where PIa is the as yet undetermined initial force in the longeron. The 

force in the center column can be written similarly as 

PC = AcEc~ + PIc (A-13) 

where PIc is the initial force in the column. The diagonal members also 

have an axial force component which must be considered for equilibrium. If 

the diagonal members are assumed to be carrying a tensile force, T, the total 

axial force component due to all six diagonals at any column cross section is 

Fd = -6T sine (A-14) 

Because the spokes are initially buckled, this axial component, Fd, 

remains constant for all loadings. 

For equilibrium of the unloaded column, 

pd + 3P, + PC = 0 

when E = K = 0. 

Substituting equations A-12, A-13, and A-14 into A-15 gives 

P 
6T sine - PIc 

Ia = 3 - 

(A-15) 

(~-16) 



From the beam-column analysis the equilibrium equations can be written as 

P E=- 
C (A-17) 

M max K=- 
D (~-18) 

where P is the total axial load on the column and Mmax is the moment due 

to the imperfection and is defined in equation A-7. Substituting equations 

A-16, A-17, A-18, and A-7 into equations A-12 and A-13 gives the force in the 

most highly loaded longeron as 

-pap,PE) + 2T sine - - 3 

P 
IC 

due to due to bending initial force 

axial force moment 

and the force in the column as 

pc = P 
rl+1 + pIc 

(A-19) 

(A-20) 

due to initial 

axial force force 

where n is a nondimensional stiffness parameter defined as 

3A,EL 
n=r (A-21) 

c c 

The force in a single diagonal can be calculated by considering trans- 

verse equilibrium of any beam cross section as 

V 
Pd = max 

4 case cos 30" - T 

which after substitution of equation A-9 becomes 

p cp.1 
Pd = - -T 

2fi case (1 - P/P,) 

(A-22) 

(A-23) 
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The force in the spokes can be calculated by considering equilibrium 

between the two sets of diagonals and the spoke and is given by 

pS 
= 2fi T cos (A-24) 

The forces in all four components of the truss-column (longerons, center 

co1 umn, diagonals, and spokes) have been related to the applied axial force, P, 

and the initial member forces, P,_ and T. The values of these initial 

ific design conditions for the lected by consideri;; spec forces are se 

truss-column. 

Design Conditions and Constraint Equations 

To determine the initial,forces T and PIc and to design the minimum 

mass truss-column for given values of P and column length, L, the following 

design conditions are imposed: 

(1) When the beam is loaded with an applied tensile force equal to 

-Pdes' the force in the center column PC is zero. This 

insures that any hinge joints along the center column will not 

be put in tension. 

(2) When the appl 

column should 

(3) When P = Pdes 

ed compressive load P is equal to Pdes, the center 

not buckle between the spoke supports. 

the longerons must not be in compression. 

(4) When P = Pdes, the induced transverse shear force at the beam ends 

causes the force in one set of diagonals to drop to zero. 

(5) At p = Pdes' 2% transverse shear deformation is allowed. The 

diagonals are sized to provide the necessary shear stiffness for 

this criteria to be met. 

(6) The spokes are designed to buckle under the load induced by the 

two sets of diagonal members connected at each spoke. 
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Design condition 1 is applied to equation A-20 to find the initial 

COlUIIrI force, PIc, by Setting P = -Pdes 

P des 
pIc = rl+l (A-25) 

Equation A-20 now becomes 

P 
pc=P+des 

n+l n+l (~-26) 

From condition 4 the initial tension T can be found by setting P = Pdes 

and Pd = 0 in equation A-23. The result is 

T= 'des (f) 

20 case (1 - Pdes/PE) 
(A-27) 

Substituting equations A-25 and A-27 into equation A-19 and replacing R = 

L/(nfitane) yields the force in the longeron 

' - 'des (f) tane 

pL = 3(rl+l+ JJ- 
2nP 'des 

(1 - P/P,) -(l-Pdes/PE) (A-28) 

Given the member forces, Pd, Ps, PC, PL, in terms of a design load, 

'des' an applied load, P, and the geometric properties of components, the 

minimum mass truss can be designed. The objective is to minimize the mass of 

the structure subject to both equality and inequality constraints. A common 

nomenclature for inequality constraints is used where 

Gi(V) < 0; constraint satisfied 

Gi(v) > 0; constraint violated 

The equality and inequality constraints arise from the satisfaction of 

the six design conditions. Since condition 1 has already been used to find 

the initial column force, PIc, condition 2 is considered next. 

20 



The buckling load of the center column between spoke supports can be 

written as 

r2EcIcn 2 

P = 
crit 'center column L2 

(A-29) 

where EC is the modulus and I, is the moment of inertia of the center 

column. 

Condition 2 can be expressed by setting P = Pdes in equation A-27 and 

usinq equation A-29 as 

2P des 

G, = 1+ n 

r2E I c c n2/L2 - '*' 
(A-30) 

In calculating G,, the center column moment of inertia Ic is calculated 

for either an expression for a hollow thin walled tube or a solid circular 

member depending on the particular design conditions. 

Condition 3 can be written similarly by setting P = Pdes in equation 

A-28 as 

G2 = 

Pdesh) 
30 - 

pdes (F) tane (n+2n) 

- p/p,) 

1.0 (A-31) 

Condition 4 was satisfied by selection of the initial tension force, T, 

in the diagonal members. These diagonal members still remain to be sized, 

however, which will be done by considering condition 5. 

To insure that transverse shear deformation has a small effect on the 

buckling of the truss-column, the diagonal member area is selected so that. 

the classical Euler buckling load is reduced only by 2%. From reference 8, 

the buckling load for a shear flexible column is 

P =A- 
cr pE 1+ c 

S 

(A-32) 
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where PE is given by equation A-6 and Cs, the transverse shear stiffness 

is given by equation A-4. The 2% reduction requires that 

pE 

%= l O2 
(A-33) 

Substituting equation A-4 into A-33 and rearranging yields an expression for 

the diagonal member area 

A ~50 pE 
d 3 Edsine cos2e 

(A-34) 

In dealing with the imperfect column this equation is modified slightly to 

yield the actual expression used for determining diagonal member area 

Ad = y ‘des 

Edsine cos2e 
(A-35) 

Finally, the spokes are designed by considering condition 6. This is 

done by equating the induced load in the spoke, equation A-24, to an equation 

for the Euler buckling load of a simply supported tubular or solid circular 

member. Just as in the case of the center column, the choice of tubular or 

solid member depends on the specific design conditions--design load, column 

length, allowable wall thickness, etc. The two sets of equations governing 

the spoke design are: 

Tubular member: 

s ( 

PsL2 
r = > 

l/3 

3T3ESts n2 tan28 
(~-36) 

AS = 2rrsts 
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Solid member: 

r = s ( 

4 PsL2 

TITLE, n2 tan28 
)1/4 (A-37) 

By applying conditions l-6, either direct expressions or constraint 

equations have been written governing design of components of the truss 

column. It should be noted that by the use of equations A-35 and A-36 or 

A-37 the diagonals and spokes can be sized directly. However, two design 

variables, the longeron radius rR and the center column radius rc, remain 

undetermined and must be selected to give an overall minimum mass. The over- 

all design problem, then, is a combination of both weight-strength design 

methods and direct minimization of the structure mass. The undetermined 

variables rc and rR are determined by minimizing the truss mass which 

can be written 

M = MJL(&& + pCAC + 6PdAd/sine + fi PsAs/tane) (A-38) 

where Ad and A, are found from equations A-35 and A-36 or A-37. The 

factor MJ is used to account for the mass of the joints in the truss 

and can be selected arbitrarily since it has no effect on the design and 

is used only to produce a realistic total mass for the truss. 

Equation A-38 can be minimized to determine rc and rR subject to 

constraints G, and G2 (equations A-30 and A-31) and lower bounds on 

rc and rR using nonlinear mathematical programming techniques. In this 

study an available computer code, CONMIN (ref. 9), based on a feasible 

direction method was used to perform the numerical studies. 
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TABLE I. - DETAILS OF MINIMUM MASS GRAPHITE, TENSION-WIRE 

STIFFENED TRUSS-COLUMNS 

'des M n 

(N) (kg) 

L = 5m 

{ 

L = 50m 

a/L = .OOlO e = 45" 

.381 

.381 

.549 

1.13 

2.66 
--.__ 

5. 1.17 89 .324 .381 .254 .160 

50. 1.96 72 .401 .497 .205 .614 

.394 .589 

5000. 1 16.8 1 31 1 ,931 1 1.97 19.6 1 .825 1 2.74 .417 .726 

25000. 42.3 22 1.31 3.01 41.8 1.85 6.32 .459 .780 

L = 500m 

L 

~. 
3.41 

8.92 

24.0 

68.5 

.134 

.199 

.260 

.334 

.414 

L = 5m a/L = .OOlO e = 60" 

.738 1 .029 .070 

.099 

.208 

.809 

2.53 

5. 

50. 

500. 

5000. 

25000. 

22 

32 

19 

12 

7 

.768 

1.22 

2.79 

7.96 

20.4 

.294 .617 

.314 .763 

.419 .801 

.244 .915 
-- I .-. -_ 

L = 50m 

L = 500m 

5. 28.5 92 
50. 74.0 68 

500. 204. 47 
5000. 620. 31 

25000. 1415. 22 

_. 
.381 

.473 

1.10 

2.76 

5.90 
-- 

- 
.206 

.227 L .297 

.314 

.410 

1.46 

3.36 

9.39 

27.9 

57.1 

.496 4.79 .381 

.987 12.4 .381 

1.90 33.6 .381 

3.63 93.9 1.05 

5.37 201. 2.36 

- 
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Figure 1. - Model of wire-stiffened expandable truss-column. 
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Figure 2.- Geometry of the t ension-wire stiffened ~01~ 
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Figure 3.- Optimum mass distributions for the truss-column components. 
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M 

kg 

L= 50 m 
P = 500 N 
8 = 450 

I I 
.OOlO 

a/L 

.OlOO 

Figure 5.- Change in mass of the truss column as a function of initial imperfection. 
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